Novel Use of Matched Filtering for Synaptic Event Detection and Extraction

نویسندگان

  • Yulin Shi
  • Zoran Nenadic
  • Xiangmin Xu
چکیده

Efficient and dependable methods for detection and measurement of synaptic events are important for studies of synaptic physiology and neuronal circuit connectivity. As the published methods with detection algorithms based upon amplitude thresholding and fixed or scaled template comparisons are of limited utility for detection of signals with variable amplitudes and superimposed events that have complex waveforms, previous techniques are not applicable for detection of evoked synaptic events in photostimulation and other similar experimental situations. Here we report on a novel technique that combines the design of a bank of approximate matched filters with the detection and estimation theory to automatically detect and extract photostimluation-evoked excitatory postsynaptic currents (EPSCs) from individually recorded neurons in cortical circuit mapping experiments. The sensitivity and specificity of the method were evaluated on both simulated and experimental data, with its performance comparable to that of visual event detection performed by human operators. This new technique was applied to quantify and compare the EPSCs obtained from excitatory pyramidal cells and fast-spiking interneurons. In addition, our technique has been further applied to the detection and analysis of inhibitory postsynaptic current (IPSC) responses. Given the general purpose of our matched filtering and signal recognition algorithms, we expect that our technique can be appropriately modified and applied to detect and extract other types of electrophysiological and optical imaging signals.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Determination of Amphetamine and Methamphetamine by Dispersive Liquid Phase Micro-extraction: A Novel Experimental Approach

Background: A syringe to syringe dispersive liquid phase micro-extraction-floating organic drop was applied and used for the simultaneous extraction and pre-concentration of trace amounts of amphetamine (AMP) and methamphetamine (MAMP) in urine samples. The extracted analytes were determined by high performance liquid chromatography along with diode array detection. Materials & Methods: In thi...

متن کامل

A Novel Architecture for Detecting Phishing Webpages using Cost-based Feature Selection

Phishing is one of the luring techniques used to exploit personal information. A phishing webpage detection system (PWDS) extracts features to determine whether it is a phishing webpage or not. Selecting appropriate features improves the performance of PWDS. Performance criteria are detection accuracy and system response time. The major time consumed by PWDS arises from feature extraction that ...

متن کامل

Herbal plants zoning using target detection algorithms on time-series of Sentinel-2 multispectral images (Amygdalus Scoparia)

Today, medicinal plants have a special place in the economy and health of a society. Due to the natural growth of many of these products, the necessity of zoning them for optimum and optimal utilization seems necessary. Traditional zoning solutions are not efficient due to their low accuracy and speed, therefore a new approach is needed. Remote sensing data have many applications in various fie...

متن کامل

A NOVEL FUZZY-BASED SIMILARITY MEASURE FOR COLLABORATIVE FILTERING TO ALLEVIATE THE SPARSITY PROBLEM

Memory-based collaborative filtering is the most popular approach to build recommender systems. Despite its success in many applications, it still suffers from several major limitations, including data sparsity. Sparse data affect the quality of the user similarity measurement and consequently the quality of the recommender system. In this paper, we propose a novel user similarity measure based...

متن کامل

FDR control of detected regions by multiscale matched filtering

Feature extraction from observed noisy samples is a common important problem in statistics and engineering. This paper presents a novel general statistical approach to the region detection problem in long data sequences. The proposed technique is a multi-scale kernel regression in conjunction with statistical multiple testing for region detection while controlling the false discovery rate (FDR)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2010